

THE MATHEMATICS OF LATTICE-BASED CRYPTOGRAPHY

2. Short Integer Solutions (SIS) Problem

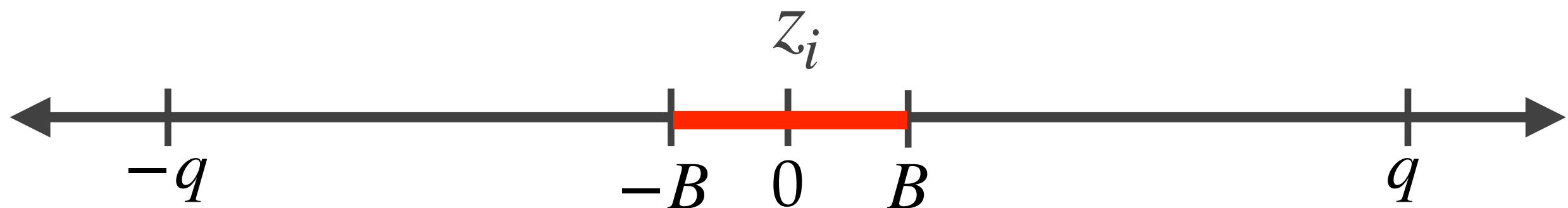
Alfred Menezes
cryptography101.ca

Outline

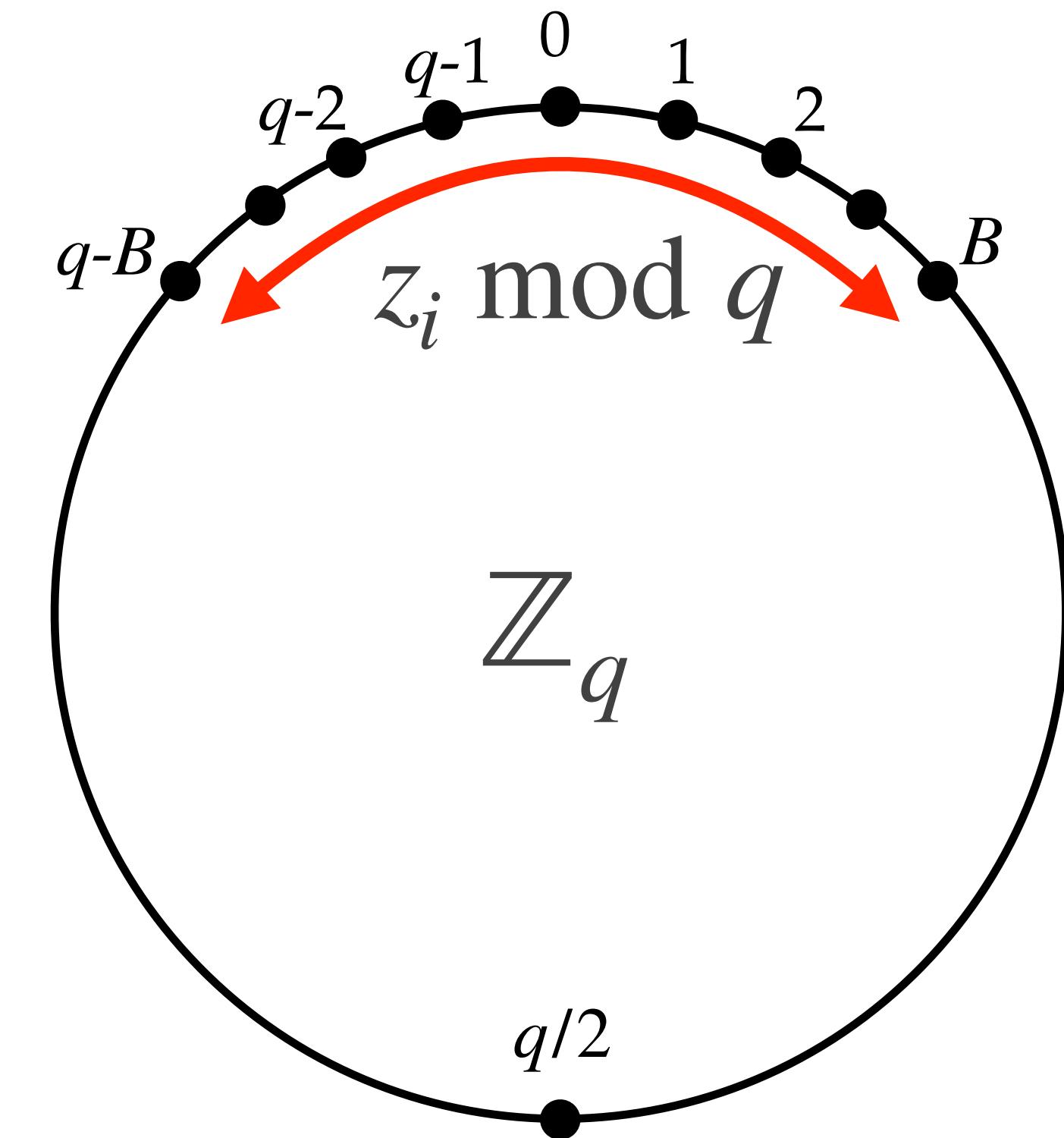
1. SIS definition
2. Collision-resistant hash function
3. ISIS definition
4. SIS and ISIS are equivalent
5. Normal-form ISIS

SIS definition

- ♦ SIS was introduced by Ajtai in 1996.
- ♦ **Definition.** (*Homogeneous*) *Short Integer Solutions* problem: $\text{SIS}(n, m, q, B)$
Given $A \in_R \mathbb{Z}_q^{n \times m}$, find $z \in \mathbb{Z}^m$ such that $Az = 0 \pmod{q}$, where $z \neq 0$ and $z \in [-B, B]^m$ (and $B \ll q/2$).



- ♦ **Notation:**
 1. $\mathbb{Z}_q = \{0, 1, 2, \dots, q - 1\}$.
 2. $x \in_R S$ means that x is selected uniformly (and independently) at random from S .
 3. All vectors are column vectors.



Existence of an SIS solution

1. If $n \geq m$, then one expects that $Az = 0 \pmod{q}$ has a unique solution $z = 0$, so no SIS solution exists. Henceforth, we'll assume that $n < m$.
2. If $(B + 1)^m > q^n$, then by the pigeonhole principle there must exist $z_1, z_2 \in [-B/2, B/2]^m$ such that $z_1 \neq z_2$ and $Az_1 = Az_2 \pmod{q}$. Then $z = z_1 - z_2$ is an SIS solution.
3. So, we'll henceforth assume that $(B + 1)^m > q^n$, i.e., $m > (n \log q) / \log(B + 1)$, whereby an SIS solution is guaranteed to exist.
4. The SIS solution is not unique. Indeed, if z is an SIS solution, then so is $-z \pmod{q}$.

SIS: Given $A \in_R \mathbb{Z}_q^{n \times m}$, find $z \in \mathbb{Z}^m$ such that $Az = 0 \pmod{q}$, where $z \neq 0$ and $z \in [-B, B]^m$ (and $B \ll q/2$).

$$\begin{array}{c|c|c} A & z & 0 \pmod{q} \\ \hline n \times m & m \times 1 & n \times 1 \end{array}$$

SIS example

- ♦ Let $n = 3, m = 5, q = 13$, and $B = 3$.
- ♦ **SIS instance:**
$$A = \begin{bmatrix} 1 & 0 & 7 & 12 & 4 \\ 2 & 11 & 3 & 6 & 12 \\ 9 & 8 & 10 & 5 & 1 \end{bmatrix}.$$
- ♦ We need to find nonzero $z = (z_1, z_2, z_3, z_4, z_5) \in [-3, 3]^5$ with $Az = 0 \pmod{13}$.
- ♦ Equivalently, we have $z_i \bmod 13 \in \{0, 1, 2, 3, 10, 11, 12\}$.
- ♦ Performing Gaussian elimination on A yields the reduced matrix $A' = \begin{bmatrix} 1 & 0 & 0 & 5 & 10 \\ 0 & 1 & 0 & 10 & 12 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}.$
- ♦ Thus the complete solution to $Az = 0 \pmod{13}$ is $z_1 = 8z_4 + 3z_5, z_2 = 3z_4 + z_5, z_3 = 12z_4 + 12z_5, z_4 \in \mathbb{Z}_{13}, z_5 \in \mathbb{Z}_{13}$.
- ♦ Among the $13^2 = 169$ solutions $z \in \mathbb{Z}_{13}^5$, are **six SIS solutions**:
$$z = \pm (3, 1, -1, 0, 1), z = \pm (1, 0, -2, -1, 3), \text{ and } z = \pm (2, 1, 1, 1, -2).$$

SIS application: Collision-resistant hash function

- ♦ **Hash function definition:**

- ♦ Select $A \in_R \mathbb{Z}_q^{n \times m}$, where $m > n \log q$.
- ♦ Define $H_A : \{0,1\}^m \longrightarrow \mathbb{Z}_q^n$ by $H_A(z) = Az \pmod{q}$.

- ♦ **Notes**

1. **Compression.** Since $m > n \log q$, we have $2^m > q^n$.

Thus, H_A is indeed a compression function.

2. **Collision resistance.** Suppose that one can efficiently find $z_1, z_2 \in \{0,1\}^m$ with $z_1 \neq z_2$ and $H_A(z_1) = H_A(z_2)$. Then $Az_1 = Az_2 \pmod{q}$, whence $Az = 0 \pmod{q}$ where $z = z_1 - z_2$. Since $z \neq 0$ and $z \in [-1,1]^m$, z is an SIS solution (with $B = 1$) which has been efficiently found. \square

Inhomogeneous SIS (ISIS)

- ◆ **Definition.** *Inhomogeneous Short Integer Solutions problem:* ISIS(n, m, q, B)
Given $A \in_R \mathbb{Z}_q^{n \times m}$ and $b \in_R \mathbb{Z}_{q'}^n$, find $z \in \mathbb{Z}^m$ such that $Az = b \pmod{q}$ and $z \in [-B, B]^m$.

- ◆ **Notes**

1. We'll assume that $n < m$.
2. If $(2B + 1)^m \gg q^n$, then an ISIS solution is likely to exist.
3. So, we'll henceforth assume that $(2B + 1)^m \gg q^n$, i.e., $m \gg (n \log q) / \log(2B + 1)$.

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} b \pmod{q} \end{bmatrix}$$

SIS and ISIS are equivalent (1)

- ♦ **Claim 1.** $\text{SIS} \leq \text{ISIS}$.

- ♦ **Proof.** Let A be an SIS instance.

Write $A = [A' | -b']$ where $A' \in \mathbb{Z}_q^{n \times (m-1)}$ and $b' \in \mathbb{Z}_q^n$.

Determine an ISIS solution z' to the ISIS instance (A', b') , so $A'z' = b' \pmod{q}$ and $z' \in [-B, B]^{m-1}$.

Then $z = \begin{bmatrix} z' \\ 1 \end{bmatrix} \in \mathbb{Z}^m$ satisfies $Az = 0 \pmod{q}$, $z \neq 0$, and $z \in [-B, B]^m$.

Thus, z is an SIS solution that we have efficiently found. \square

$$A = \begin{bmatrix} & A' & -b' \end{bmatrix}$$

SIS and ISIS are equivalent (2)

- ♦ **Claim 2.** $\text{ISIS} \leq \text{SIS}$.

- ♦ **Proof.** Let (A, b) be an ISIS instance.

Select $j \in_R [1, m + 1]$ and $c \in_R [-B, B]$ with $c \neq 0$.

Let A' be the $n \times (m + 1)$ matrix obtained by inserting $-c^{-1}b \pmod{q}$ as a new j th column in A .

Determine an SIS solution $z' \in [-B, B]^{m+1}$ to $A'z' = 0 \pmod{q}$.

If indeed the j th entry in z' is c , then $Az = b \pmod{q}$, where $z \in [-B, B]^m$ is obtained from z' by deleting its j th entry. Thus, z is an ISIS solution that we have efficiently found. \square

$$\begin{array}{c|c|c} A & z & = b \pmod{q} \end{array}$$

Normal-form ISIS (nf-ISIS)

- ◆ **Definition.** *Normal-form ISIS problem:* $\text{nf-ISIS}(n, m, q, B)$

Given $A \in_R \mathbb{Z}_q^{n \times m}$ and $b \in_R \mathbb{Z}_{q'}^n$, find $z \in \mathbb{Z}^{m+n}$ such that $[A \mid I_n]z = b \pmod{q}$ and $z \in [-B, B]^{m+n}$.

$$\begin{array}{|c|c|} \hline A & I_n \\ \hline \end{array} \mid z = b \pmod{q}$$

- ◆ **Claim.** $\text{nf-ISIS}(n, m, q, B)$ and $\text{ISIS}(n, m + n, q, B)$ are equivalent.

- ◆ **Proof.** ($\text{nf-ISIS} \leq \text{ISIS}$) Given a nf-ISIS instance (A, b) , select $C \in_R \mathbb{Z}_q^{n \times n}$; C is invertible with probability roughly $(q - 1)/q$. Then $([CA \mid C], Cb)$ is an ISIS instance with the same solution space as the nf-ISIS instance.
- ◆ ($\text{ISIS} \leq \text{nf-ISIS}$) Given an ISIS instance (A, b) , write $A = [A' \mid C]$; note that C is invertible with probability roughly $(q - 1)/q$. Then $([C^{-1}A' \mid I_n], C^{-1}b)$ is a nf-ISIS instance with the same solution space as the ISIS instance. \square